

Outline

- I. Supercomputers
- II. Batch Scripts
- III. Using Smoky

®NCCS•••

RIDGE
Nodemal Editionality

I. SUPERCOMPUTERS

Mare Nostrum, installed in Chapel Torre Girona, Barcelona Supercomputing Center. By courtesy of Barcelona Supercomputing Center -- http://www.bsc.es/

I. Supercomputers

- Computer Architecture 101
- Life at an HPC Center

Computer Architecture 101

- Processors
- Memory
 - Memory Hierarchy
 - TLB
- Interconnects
- Glossary

Computer Architecture 101: Processors

- CPU performs 4 basic operations:
 - Fetch
 - Decode
 - Execute
 - Writeback

Source: http://en.wikipedia.org/wiki/Image:CPU_block_diagram.svg

\$'3 OAK \$2Riidg

CPU Operations

- Fetch
 - Retrieve instruction from program memory
 - Location in memory tracked by program counter (PC)
 - Instruction retrieval sped up by caching and pipelining
- Decode
 - Interpret instruction by breaking into meaningful parts, e.g., opcode, operands
- Execute
 - Connect to portions of CPU to perform operation, e.g., connect to arithmetic logic unit (ALU) to perform addition
- Writeback
 - Write result of execution to memory

E R

Computer Architecture 101: Memory

- Hierarchy of memory
 - Fast-access memory: small (expensive)
 - Slower-access memory: large (less expensive)
- Cache: fast-access memory where frequently used data stored
 - Reduces average access time
 - Works because typically, applications have locality of reference
 - Cache in XT4/5 also hierarchical
- TLB: Translation lookaside buffer
 - Used by memory management hardware to improve speed of virtual address translation

Cache Associativity

- Where to look in cache memory for copy of main memory location?
 - Direct-Mapped/ 1-way Associative: only one location in cache for each main memory location
 - Fully Associative: can be stored anywhere in cache
 - 2-way Associative: two possible locations in cache
 - N-way Associative: N possible locations in cache
- Doubling associativity (1 → 2, 2 → 4) has same effect on hit rate as doubling cache size
- Increasing beyond 4 does not substantially improve hit rate; higher associativity done for other reasons

Computer Architecture 101: Interconnects

- Connect nodes of machine to one another
- Methods of interconnecting
 - Fiber + switches and routers
 - Directly connecting
- Topology
 - Torus
 - Hypercube
 - Butterfly
 - Tree

Hypercube

Computer Architecture 101: Glossary

- SSE (Streaming SIMD Extensions): instruction set extension to x86 architecture, allowing CPU to work on multiple instructions in single clock cycle
- DDR2 (Double Data Rate 2): synchronous dynamic random access memory, operates twice as fast as DDR1
 - DDR2-xyz: performs xyz million data transfers/second
- Dcache: cache devoted to data storage
- Icache: cache devoted to instruction storage
- STREAM: data flow

NCCS Facts and Figures

	Jaguar	Jaguarpf	Eugene
Compute Nodes	7832	18,772	2048
Processor	2.1 GHz AMD Opteron Quad Core	2.3 GHz AMD Opteron Dual Quad-Core	850MHz IBM quad core 450d PowerPC
Memory	2 GB/core DDR2-667/ DDR2-800	2 GB/core DDR2-800	2 GB/node
Network	Cray SeaStar 2	Cray SeaStar 2	3-D torus, 5.1 Gb/s
Peak	263 TF	1.3 PF	27 TF

XT4/5 Architecture

- Hardware
 - Processors
 - Memory
 - Memory Hierarchy
 - TLB
 - System architecture
 - Interconnects
- Software
 - Operating System Integration
 - CNL vs Linux

Software Architecture

- Compute PE (processing element): used for computation only; users cannot directly access compute nodes
- Service PEs: run full Linux
 - Login: users access these nodes to develop code and submit jobs, function like normal Linux box
 - Network: provide high-speed connectivity with other systems
 - System: run global system services such as system database
 - //O: provide connectivity to GPFS (global parallel file system)

®NCCS•••

CNL vs Linux

- CNL (Compute-Node Linux) contains subset of Linux features
- Minimizes system overhead because little between application and bare hardware

Life at an HPC Center

- Work
- People
- Careers

Life at an HPC Center: Work

- Vendor
 - Install/maintain machine at center
 - Support customers
 - Support/improve current software environment
 - Develop next architecture, software
 - Market products

- Center
 - Maintain system
 - Develop/maintain power/ cooling infrastructure
 - Support users
 - Maintain system software
 - Develop next architecture/software
 - Outreach to public, Congress, funding agencies
 - Perform original research

Life at an HPC Center: People

- Vendor
 - Computer Architects
 - Software Developers
 - Mathematicians and Science Experts
 - Electrical Engineers
 - Electricians
 - Installers
 - Customer support liaisons

- Center
 - System administrators
 - Network engineers
 - System security experts
 - User support specialists
 - Education specialists
 - Science writers
 - Web Developers
 - Application Scientists
 - Computer Architects
 - Electrical, Civil, Mechanical Engineers
 - Electricians
 - Project Managers
 - Finance/Accounting managers

S OAK RIDGE

Life at an HPC Center: Careers

- Five groups in NCCS
 - User Assistance and Outreach
 - Helping users access machines, technical support, education, publications
 - Scientific Computing
 - Science experts helping users to take advantage of NCCS resources
 - Technology Integration
 - Develop infrastructure that supports NCCS systems and keep it ahead of technology curve
 - High Performance Computing
 - · Keep systems up and running
 - Cray Center for Excellence
 - System expertise to facilitate breakthrough science on Cray architectures

Life at an HPC Center: Careers

- NCCS is good place to work
 - Good pay, benefits
 - Smart and nice colleagues
 - Can work your way up

Resources: Computer Architecture 101

Wikipedia articles on computer architecture:

http://en.wikipedia.org/wiki/Computer_architecture http://en.wikipedia.org/wiki/CPU,

http://en.wikipedia.org/wiki/CPU_cache, http://en.wikipedia.org/wiki/DDR2 SDRAM.

http://en.wikipedia.org/wiki/Microarchitecture

http://en.wikipedia.org/wiki/SSE2,

http://en.wikipedia.org/wiki/Streaming SIMD Extensions

Heath, Michael T. (2007) Notes for CS 554, Parallel Numerical Algorithms,

http://www.cse.uiuc.edu/courses/cs554/notes/index.html

Resources: Cray XT4 Architecture

Local machines

- Jaguar: http://www.nccs.gov/computing-resources/jaguar/
- Eugene: http://www.nccs.gov/computing-resources/eugene/
- Jaguarpf: http://www.nccs.gov/jaguar/

AMD architecture

- Waldecker, Brian (2008) Quad Core AMD Opteron Processor Overview, available at
 - http://www.nccs.gov/wp-content/uploads/2008/04/ amd_craywkshp_apr2008.pdf
- Larkin, Jeff (2008) Optimizations for the AMD Core, available at http://www.nccs.gov/wp-content/uploads/2008/04/optimization1.pdf

XT4 Architecture

 Hartman-Baker, Rebecca (2008) XT4 Architecture and Software, available at http://www.nccs.gov/wp-content/training/2008 users meeting/4-17-08/ using-xt44-17-08.pdf

II. BATCH SCRIPTS

Soft Batch Cookies. From http://www.kelloggconvenience.com/Resources/Soft_Batch-Home-PBpouch.jpg

II. Batch Scripts

- Batch system and Scheduling
- Concepts
- Useful commands
- Further help

Batch System and Scheduling

- Supercomputer: powerful computer consisting of many interlinked CPUs
- Users competing for computational resources
- How to launch and schedule jobs fairly?
- Job can run without user presence
- Must not allow one user to hog resources

<!-- The state of the stat

Batch System

- Batch system accepts input jobs into queue and launches them when resources available
- Many machines use batch system PBS (Portable Batch System)
- PBS developed for NASA in 1990s

Scheduler

- Scheduler decides when jobs can be run based on scheduling policies, e.g. user priority, length of job, number of nodes requested, length of time in queue
- Many machines use Maui Scheduler
- Maui Scheduler extensively developed, supported by large segment of computation (source: www.the-hawaii-vacation-guide.com) community including U.S. Dept. of Energy, NCSA

Concepts

- Limits for walltime and number of processors, so if request exceeds limits, job automatically rejected
- Scheduler rules complicated, but generally, "smaller" jobs run first
- Size of job is function of number of processors and estimated time
- You provide info about number of processors you want and estimate of time job will run

Concepts

- Strategies:
 - Like inverse of "The Price Is Right," give lowest estimate possible, without going under true time needed (always good strategy)
 - Use fewer processors if possible (not always good strategy)
- If you reach end of estimated time, PBS will terminate your job!
- Write script that tells PBS what to do when job is launched

Concepts

- Shell Script format:
 - First, a line invoking the scripting language:
 - #!/bin/csh
 - Next, embedded PBS commands, e.g.
 #PBS -1 walltime=00:10:00, nodes=2:ppn=2
 #PBS -q workq
 (the shell script interprets these as comments, but PBS
 understands they are PBS commands)
 - Then, environment variable initialization, e.g. setenv MYMAINDIR /home/hqi/hello (sets variable MYMAINDIR to /home/hqi/hello) setenv PROG \$MYMAINDIR/prog (sets PROG to / home/hqi/hello/prog)

®NCCS•••

Concepts

- Shell script format (continued):
 - Then, shell script and regular Linux commands, e.g.
 if (-e \$OUTF) mv \$OUTF \$OUTF.old
 (meaning that if file called \$OUTF exists, rename it to \$OUTF.old)
 - Finally, run job:
 mpirun -np \$NP \$PROG < \$INFILE > \$OUTF
- To launch job:
 - Make script executable*: chmod u+x myscript
 - qsub myscript

*Not necessary on some systems

S Oak S Ridg

Useful Commands (PBS)

- * #PBS -1 walltime=hh:mm:ss, nodes=n:ppn=p This tells PBS how much walltime you request (where hh:mm:ss replaced by appropriate number of hours, minutes, and seconds), how many dual processor nodes you want (replace n with appropriate number), and how many processors per node (1, 2, 3, or 4)
- #PBS -q workq Which queue to use (in this case, queue called workq)
- #PBS -V Export all environment variables to batch job (good practice to do this)
- #PBS -m be Sends you e-mail at beginning and end of job

Useful Commands (Shell Scripting)

- set echo Print out commands as they are executed (useful for debugging script)
- setenv A B or export A=B Sets environment variable A to B
- \$A value of A
- mpirun -np \$NP \$PROG < \$INPUT
 mpirun (sometimes mpiexec, or on
 proprietary systems, aprun, poe, etc.) is executable
 that launches parallel jobs on multiple processors; np is flag indicating number of processors used in run
 *NOTE: some implementations do not require input redirection

*NOTE: some implementations do not require input redirection (<)

Further Help

- NCSA Cobalt Documentation: Running Jobs <u>http://www.ncsa.uiuc.edu/UserInfo/Resources/</u> Hardware/SGIAltix/Doc/Jobs.html
- The C Shell tutorial http://www.eng.hawaii.edu/Tutor/csh.html
- DuBois, Paul. Using csh & tcsh, O'Reilly & Associates, 1995.
- Newham, Cameron and Bill Rosenblatt. Learning the bash Shell, O'Reilly & Associates, 1998.

®NCCS•••

Bibliography/Resources

- About OpenPBS http://www.openpbs.org/about.html
- Maui Scheduler http://www.supercluster.org/maui/

III. USING SMOKY

Sunset from Clingmans Dome, Great Smoky Mountains National Park, photo available at $\underline{http://www.nps.gov/grsm/photosmultimedia/index.htm}$

®NCCS••••

III. Using Smoky

- About Smoky
- Logging In
- Compiling
- Software Environment
- Running Jobs

About Smoky

- Development cluster, comparable to larger NCCS machines
- Used for application development
- 80 node Linux cluster
- Each node consists of four quad-core 2.0 GHz AMD Opteron processors, with 32 GB memory (2GB/core)
- Gigabit ethernet network with infiniband interconnect

®NCCS•••

Logging in to Smoky

- Use ssh to connect
 ssh username@smoky.ccs.ornl.gov
- Authentication using one-time passwords from RSA SecurID key fob
- X11 Tunneling: use -x (or on a Mac, -y) option with ssh

Compiling on Smoky

- Three compiler suites available on smoky:
 - PGI (default)
 - Pathscale
 - GCC
- MPI compilers (wrappers to compiler independent of programming environment)
 - mpicc (C compiler)
 - mpiCC (C++ compiler)
 - mpif77 (Fortran 77 compiler)
 - mpif90 (Fortran 90 compiler)

®NCCS•••

Software Environment on Smoky

- Suppose I need to use GNU C++ compiler to compile my code
- Suppose I also want to link with the PETSc library
- On most systems, would need to change paths in makefiles each time I port to new system
- Would need to make sure to point to GNU compiler and proper build of PETSc
- What happens if I discover that I need a different compiler? Go back and change everything again

Software Environment on Smoky

- Modules allow dynamic modification of user environment with modulefiles
- Can switch from PGI to GNU and back again with simple command
- Can load proper version of PETSc automatically, based on compiler loaded

®NCCS•••

Software Environment on Smoky: Modules

- Software is loaded or swapped using modules
- Allows software, libraries, paths, etc. to be cleanly entered into and removed from your programming environment
- Conflicts are detected and loads that would cause conflicts are not allowed

Software Environment on Smoky: Modules

| Command | Definition | Example |
|--|--|------------------------------|
| module load my_module | Loads module my_module | module load petsc |
| module swap first_module second_module | Replaces first_module with second_module | module swap PE-pgi
PE-gnu |
| module help | Lists available commands and usage | |
| module list | Lists all modules currently loaded | |
| module avail [name] | Lists all modules [beginning with name] | module avail gcc |

Running Jobs on Smoky

- Login node: node you log in to
 - Edit files
 - Code compilation
 - Data backup
 - Job submission
- Compute nodes
 - Where jobs run
 - Access managed by PBS
 - Scheduling by Moab

Nice Job Script for Smoky

```
#PBS -V
#PBS -j oe
#PBS -A STF006
#PBS -N loadbal
#PBS -l walltime=00:10:00,nodes=1:ppn=16
export CURRDIR="/ccs/home/hqi/hello"
export SCRDIR="/tmp/work/hqi"
export EXEC="hello"
export INPUT_FILE="hello_input"
cp $CURRDIR/$EXEC $SCRDIR
cp $CURRDIR/$INPUT_FILE $SCRDIR
cd $SCRDIR
date
mpirun -n 16 ./$EXEC < $INPUT_FILE
date</pre>
```

Resources/Bibliography

- Smoky webpage http://www.nccs.gov/computing-resources/smoky/
- NCCS Modules webpage <u>http://www.nccs.gov/user-support/general-support/modules/</u>

